Saddle point localization of molecular wavefunctions
نویسندگان
چکیده
The quantum mechanical description of isomerization is based on bound eigenstates of the molecular potential energy surface. For the near-minimum regions there is a textbook-based relationship between the potential and eigenenergies. Here we show how the saddle point region that connects the two minima is encoded in the eigenstates of the model quartic potential and in the energy levels of the [H, C, N] potential energy surface. We model the spacing of the eigenenergies with the energy dependent classical oscillation frequency decreasing to zero at the saddle point. The eigenstates with the smallest spacing are localized at the saddle point. The analysis of the HCN ↔ HNC isomerization states shows that the eigenstates with small energy spacing relative to the effective (v1, v3, ℓ) bending potentials are highly localized in the bending coordinate at the transition state. These spectroscopically detectable states represent a chemical marker of the transition state in the eigenenergy spectrum. The method developed here provides a basis for modeling characteristic patterns in the eigenenergy spectrum of bound states.
منابع مشابه
Random Magnetic Field Effects on Electronic Properties in Substitutionally and Topologically Disordered Alloys
We numerically investigate the effects of the random static magnetic field on a variety of electronic properties (localization of electron wavefunctions, spectral correlations and electrical conductance) in substitutionally and topologically disordered alloys. For this, we generate two-dimensional substitutionally disordered alloys and simulate three-dimensional amorphous structures by a molecu...
متن کاملGeneralized iterative methods for solving double saddle point problem
In this paper, we develop some stationary iterative schemes in block forms for solving double saddle point problem. To this end, we first generalize the Jacobi iterative method and study its convergence under certain condition. Moreover, using a relaxation parameter, the weighted version of the Jacobi method together with its convergence analysis are considered. Furthermore, we extend a method...
متن کاملSADDLE POINT VARIATIONAL METHOD FOR DIRAC CONFINEMENT
A saddle point variational (SPV ) method was applied to the Dirac equation as an example of a fully relativistic equation with both negative and positive energy solutions. The effect of the negative energy states was mitigated by maximizing the energy with respect to a relevant parameter while at the same time minimizing it with respect to another parameter in the wave function. The Cornell pot...
متن کاملFabrication of Saddle-Shaped Surfaces by Flame Forming Process
The flame forming process is widely used to manufacture ship hull plates. The saddle-shaped surfaces have different curvatures in perpendicular angles of planes and the manufacturers face an anti-clastic curvature. In this article, the manufacturing of saddle-shaped surfaces utilizing the flame forming process is investigated. The spiral irradiating scheme is used for forming. In order to study...
متن کاملConvergence Properties of Hermitian and Skew Hermitian Splitting Methods
In this paper we consider the solutions of linear systems of saddle point problems. By using the spectrum of a quadratic matrix polynomial, we study the eigenvalues of the iterative matrix of the Hermitian and skew Hermitian splitting method.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2016